PHYSICAL REVIEW E, VOLUME 65, 026216
Finite-size effects on active chaotic advection
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A small (but finite-size¢ spherical particle advected by fluid flows obeys equations of motion that are
inherently dissipative, due to the Stokes drag. The dynamics of the advected particle can be chaotic even with
a flow field that is simply time periodic. Similar to the case of ideal tracers, whose dynamics is Hamiltonian,
chemical or biological activity involving such particles can be analyzed using the theory of chaotic dynamics.
Using the example of an autocatalytic reactiér; B— 2B, we show that the balance betwedigsipationin
the particle dynamics armgfoductiondue to reaction leads to a steady state distribution of the reagent. We also
show that, in the case of coalescence reactbhnB— B, the decay of the particle density obeys a universal
scaling law as approximately * and that the particle distribution becomes restricted to a subset with fractal
dimensionD,, whereD, is the correlation dimension of the chaotic attractor in the particle dynamics.
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[. INTRODUCTION serving in itsn-dimensional phase space, the dynamics of a
small particle in the same flow is contracting in its
Active processes under chaotic advection, such as the dyn-dimensional phase space. In other words, the dynamics of
namics of growing population of plankton or evolving distri- finite size particles islissipative _ _ -
bution of active chemicals in environmental flows, have at- [N this paper, we choose the two-dimensional oscillating
tracted significant amount of attention in recent yéars13). ceIIuI.ar vortex flow field represented by a simple stream
These previous studies have shown that the chaotic saddﬁléncuon v
for the Lagrangian dynamics in the open flows can act as a
catalyst for the chemical reaction or biological reproduction.
The theory of chaotic dynamics was used to show that this
catalytic effect, due to the fractality of the chaotic saddle andvhereY =(Y,Y>) is the positionL is the size of a vortex
its unstable manifold, introduces a term in the equation focell, andU, gives the maximum velocity of the flow field for
the reaction kinematics that depends on the chaotic propek= 0. Figure 1 shows the streamlines, or the contour plot of
ties of the Lagrangian dynamics. fthe stream functi_on in Eql) as solid curves. The timga-
In these studies, however, the particles were assumed {gdependent version of the same flow field was extensively

be point particles without mass, which traces a fluid elemengtudied by Maxey15], in which it was found that the par-

perfectly. This assumption, of course, is an oversimplifica-t'des subjected to such flow field converge asymptotically

tion of the reality—especially when the biological activity of either to an equilibrium point or o a smooth curve gxteqdmg
concern is such as that of a plankton population. A mc)rethrough the vortex cells. To model more realistic situations,

o . : . e impose a simple periodic time dependence in the stream
realistic assumption would be that of a spherical particle tha¥:/1nction by varying the vorticity of each vortex sinusoidally.

is small, but it ha§ finite SIze, anq Itis SUbJeC.t to the forgeqt turns out that such a simple time dependence can make the
exerted by the fluid surrounding it. The equations of motiongy namics of a small particle much more interesting although
for such particles were derived by Maxgl4] for low Rey-  ne motion of pointlike tracers would still follow the stream-
nolds number, and they include terms representing not only,es of Eq.(1). We find that for certain range of parameter
the Stokes drag force and buoyancy force, but also the addeyes, the asymptotic behavior of a small particle of finite
mass effect, Basset history effect, and the Faxen correctionsize can even be chaotic and exhibit an attractor whose pro-
Even in the situation where the Basset history term and thgaction onto the physical coordinate space is a fractal set.
Faxen corrections can be ignored, the dynamics of the paSuch a situation is shown in Fig. 1.

ticle is strikingly different from the case of a point particle  The goal of this paper is to show that such fractal attrac-
without mass. While the dynamics of an ideal tracer in antors in the coordinate space also act as catalysts for the re-
incompressible, stationarg-dimensional flow is area pre- action, just as in the case of ideal tracers, even though the

UOL ) ) ’7TY1 . 7TY2
<//(Y,t)=7(1+ksmwt)sstmT, (&N
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obtained the equations of motion for a particle in the flow
X field defined by Eq(1), but we will briefly go through the
derivation here for completeness.

We follow the derivation of Maxey if15], except that the
time dependence of the flow field is taken into account. The
equation of motion for the dynamics of a small rigid spheri-
cal particle with radius [14] is

NXEL NS
/XN

dv _ N Du 1 d (V vt
e X9 My = (Mo M) g+ me Dt|,, > Megy u(y,t)
—iazvzu —6mrauX(t)
10 ”
6 td dX(7)/d7 ©
—obma T,
H 0o wv(t—r1)
0 X where

1
o . : X(H)=V()—u(Y(t),t)—ga’V?u,

FIG. 1. Trajectories on the chaotigloty and the period 7

(crosseg attractors of the stroboscopic m&pwith A=3.2, R=1, Y(t) and V(t) are the position and velocity of the particle

W= 08 I_(=2.72. In the background, level curves of_ the _Streamrespectivelyu(Y,t) is the flow field in the positiorY of the
function in Eq.(1) are plotted for reference. The gravigypoints article at timet. Heremy is the mass of the particleye is

downward, and trajectories move up on average because particl e mass of the displaced fluid, ands the kinematic vis-

are lighter than the surrounding fluid. cosity. The tem\m,:(Du/Dt)|Y(t) is the acceleration of the
fluid element in the positiolY (t) at timet and represents the

dynamics of the particles is qualitatively different. The keyforce e>§erte_d on the_partlcle by ‘.h’? s_urroundmg ﬂl.‘"d.' Slr_lce
element is to replace the escape rate from a chaotic sadd‘ige particle is not an |(_Jleal tra_cer,_ itis important to distinguish
along its unstable manifold for the case of ideal tracers Wiﬂpetween the Lagrangian derivative
the smallest average contraction rate on the attractor in this DU Ju
case. However, things are not as simple because the particle —  ——4u-Vu
dynamics can have multiple attractors, as is the case with the Dt at
flow field we are considering.

This paper is organized as follows. In Sec. II, we give thetaken along the trajectory of a fluid element and
equation of motion for a small spherical particle in the oscil-
lating cellular vortex flow field, and introduce the associated du a—u+V-Vu
discrete dynamical system for later analysis. In Sec. Il, we dt ot
discuss the attractors for the dynamics, along with the
mechanism of their births. In Sec. IV, we give detail of the taken along the trajectory of the particle. The termp(
implementation of our model system. In Sec. V, we consider-m.)g is the buoyancy force, the term
the reaction of autocatalytic typé,+B— 2B, with continu-
ous feeding of the reagem. In Sec. VI, we consider the 1 d
reaction in closed system, to analyze the asymptotic reagent - EmFa<
distribution. Finally, in Sec. VII, we discuss the coalescence
type of reaction,B+B—B, and Sec. VIl is reserved for
conclusions.

1
) — — a2p2
V—u 1OaVu)

represents the added mass effect, the terBwauX(t) is
the Stokes drag force,

Il. EQUATION OF MOTION [ dx/dr
) ) ) o —67Ta2,u,f dr—
We consider the motion of a small, spherical particle in 0o Vwy(t—r1)

the flow field of an infinite array of cellular vortices as dis-

cussed by Maxey15], but with a time dependence to allow is called the Basset history term, and the terms involving
for a nontrivial chaotic behavior. The flow is two dimen- a?V2u are the so-called Faxen corrections for the nonuni-
sional, incompressible, and time periodic, and is representefdrm flow field. Equation(2) is valid for small particles at
by the stream function in Eq1). Notice that the introduction low Reynolds numbers of up to about 250.

of a simple periodicity in time, as the factor {k sin wt), It was pointed out by Auton, Hunt, and Prud’homipi&]
does not change the streamlines. Yu, Grebogi, and 18ft  that the correct form of the added mass term should be

026216-2



FINITE-SIZE EFFECTS ON ACTIVE CHAOTIC ADVECTION PHYSICAL REVIEW B5 026216

1

1
~ 5™l 5t Bt u——a’vau||. zp*(Y,t)=;(1+ksinw*t*)sinrrY’{ sinwY3

10

dv D( 1

This correction, as mentioned 4], is small for low Rey- Where

nolds number, and hence would not change the qualitative

results to be described below. w* = “’_L
In the case of the flow field represented by the stream Uo’

function (1), the Faxen corrections simplify as ) ) o .
so, the dimensionless velocity field, after suppressing the as-

2a%u terisks, is
a2V2u= — —Lz— y
(Y b)
so the effect in the Eq2) is equivalent to decreasingby a u(y t)= IY>
small amount~(a/L)?. Thus, the correction is unlikely to ' AP(Y, 1)
affect the qualitative behavior of the system and we neglect - Y,
these terms in Eq2). The Basset history term is also ne-
glected since it can be showad8] that if the fluid inertia (1+ksinwt)sinwY, coswY,
effect is included, then the Basset history term is less signifi- ~| = (1+ksinwt)cosmYysinmY,)"

cant than the other terms. Taking these into account, the
equation of motion for the particles in the time periodic cel-By plugging this into Eq.(3), we get the full equations of

lular flow field (1) is motion
me| dV(t) dy;
( o 7)T=(mp—mF)g+e‘maw[u(\(,t)—V] Vo (4)
MU VUt 2 meV- VUt o e dY;
MmegU- VU Em,: -Vu EmFE. W:VZ’ (5)
which only differs from the one if15] by the last term. dv, _ _
After making the variables dimensionless by g = “AVatA(ltksinet)sinmY, cosmY;
. Y . \% , U . tUq R .
Y =T \% —U—O u —U—O, t = +§(1+ksmwt)(vlc05wY1COSTrYZ
and suppressing the asterisks, we get —VysinmYysinmY,)+R(1+k sinwt)?
3R
dv(t 1 3 _du i -
( )=A[u(Y,t)—V+W]+R u+=V|-vur=rZ, XsinwYqcosmY i+ 5 wk coswt
dt 2 2 at
(€©)) X sinaY, cosmY,, (6)
where dv,
——=—AV,—A(l+ksinwt)cosmY,sinwY,+AW
_ 6maul R Mg dt
C(my+ impUy. mgt img R _ _ _
(mp+ 2 mp)Ug Mp™ 2 Me + 5 (1+ksinwt)(VysinaY sinaY,
and .
—V, cosmY; cosmY,)+R(1+ksinwt)?
W— mp_ m|: 3R
~ 6rapU, ¥ XsinmY, cosmY,— —- wk coswt
The parameteA represents the amount of damping, or the X cosmYq sinmY,. 7

effect of the inertia of the particle. The limit &—oo cor-

responds to the case of point particles with no ingigiace  One can see that the Maxey equation is immediately recov-
me and mp are proportional t@®). R is the mass ratio pa- ered fork=0.

rameter andR<% corresponds to aerosalseavier than the The terms— AV, and— AV, in the equations indicate that
fluid), and R>3% corresponds to bubbledighter than the the flow defined by Eqg4)—(7) in the phase space is dissi-
fluid). W is the scaled particle settling velocity for still fluid. pative. A straightforward calculation shows that the diver-
The dimensionless stream function is gence of the flow in the phase space-i2A, so a volume
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element in the phase spaB¢ shrinks exponentially under 1
the flow ase ?Al. Note that in the limitA—o, where the @
dissipation is infinitely fast, one can see from Eg).that the
flow dynamics collapses onto the two-dimensional surface j
defined byV=u(Y,t)+W in the phase space. The projec-
tion of this dynamics onto th¥-coordinate space is volume 2
preserving, because the fluid flow is incompressible, and it
corresponds to the dynamics of ideal tracers without any in-
ertia effect. The goal of this paper is to investigate the effect
of the dissipation on the reaction dynamics.

Since the systert¥)—(7) describing the particle dynamics 1
is a periodically forced system, it is natural to consider the © @
stroboscopic section defined by the tifienap of the flow,
whereT is the period of the flow. We denote this map by x
It is easy to check that ifY(t),Y,(t),V1(t),Vo(t))T (T de- Y,
notes transposes a solution of Eqs(4)—(7), then

(=]

Y, (t)+2n Y (t)+1
Y,(t)+2m Yo(t)+1
Vi(t) ' Vi) | 0 v
Va(t) Va(t) !
FIG. 2. Attracting set4a) before k=2.6939) andb) after (k
2=Yq(t) 1-Y4(1) =2.6940) tangencyc) and(d) show the blowup of the small rect-
Y,(t) Yo(t)+1 angles shown irfa) and (b), respectively. The other parameters are
-Vy(t) | —V,4(t) A=3.2,W= 08 R=1, o=, _and ir_1 each p_icture, a t_rajec_tory of
V(1) V(1) length 30 000 is used after discarding the first 3000 iterations. The

crosses indicate the unstable period 13 orbit involved in the tan-

are also solutions, whema,n are integers. After identifying gency.

all these points with(Y,(t),Y5(t),V1(t),V(1))", the map-  and 1.48-0.01, respectively. In addition to the chaotic at-
ping F can be regarded as being defined dB  {actor, there is a stable periodic orbit of period 7 on the
=[0,1]X[0,1] X R? (R2~are the velocity componentsWe  hyperplanes defined by;=V,=0 andY;=1, V;=0. Ap-
denote this mapping bk, in order to distinguish it fronk  parently, these are the only attracting invariant sets for this
defined on the whole phase space. In fact, the original dyparticular combination of parameter values.
namics represented by Edd)—(7) can also be defined df The chaotic attractor is created from a smooth torus, or an
by reflecting everything abouyY,;=1/2 (that is, Y;—1 invariant curve that is shown in Fig(&. As the parametek
-Y;, Vi— —V;) when the particle crosses the top or bot-is increased through the critical value2.6939, the torus
tom, and letting the particle bounce off the side walls elastibreaks up and turns into a chaotic attradteig. 2(b)]. The
cally. Then,F is the timeT mapping of this flow restricted closerk is to the critical value, the longer the trajectory
to E. spends time on the “ghost” of the torus, and it visits other
Using the identification described above, any invariant separts of the chaotic attractor less often. The pa®land(d)
for F, including periodic orbits, chaotic attractors, and basinn F9- 2 show blow ups of the neighborhood of period 13

boundaries, can be extended to the whole phase space. If RRINES {0 see the transition more clearly.

bi . . & th i The essential element in the transition to chaos from the
orbit converges to an invariant set bt the corresponding - g 4th torus is the period 13 orbit indicated in Fig. 2<&s.
orbit for F has to converge to the extension of the invarian

tIt has three stable directions and one unstable direction.

set in the whole space. Whenk is below the critical value, the unstable manifold of
this orbit does not intersect the stable manifold. The situation
Ill. PARTICLE DYNAMICS is schematically illustrated in Fig(8. The smooth torus lies

Fi 1 sh th aci o th p i between the stabl'e and 'unstablel manifolds, as indicated by
igure- LS OWS_ € projection onto e~c0r_1 19uralioNihe dashed curve in the figure. Ass increased closer to the

space of the chaotic attractor for the mappigwith the  critical value, the unstable manifold gets more and more
parameter value®\=3.2, W=0.8, R=1, k=2.72, =7  crumpled, and the torus gets crumpled as a consequence,
(this means that the forcing period Ts=2). W>0, R>2/3  since it is squeezed between the stable and unstable mani-
implies that the particles are lighter than the surroundingold. At the critical value ofk, the torus, as well as the un-
fluid. Numerical estimates of its average Lyapunov_expo-table manifold, is tangent to the stable manifold. If it is
nents are \;=0.030, \,=-0.056, A\3=—3.119, N, tangent at one point, it must be tangent at infinitely many
= —3.256. The estimates of the box-counting dimension anghoints that accumulate on the periodic point because these
the correlation dimension of the projection are @602  points of tangency are on the stable manifold. As soodkias
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evolved all the particle® for a time , we convert toB all
the A cells within a distancer of a B cell. For each cell
converted to & cell, a newB particle is created with the
same velocity as its parent particle. The parametarcalled
the reaction range This completes one cycle of our activity
process.

The time periodr for which the particles are subjected to
advection between successive reactions, is calledahe-
tion time lag Since we use the neighborhood for the reac-
(b) tion distance, the reaction front moveser timer, soo/ris

the reaction front velocity. The limit ofr,7—0 with o/7
fixed, corresponds to the continuous reaction.

Since we initialize the trajectory of the particles for each
cycle at the center of the cell, and since the trajectory does
FIG. 3. Schematic drawing of stable and unstable manifolds of’0t necessarily arrive at the center ofauell, the sizee of
the period 13 orbita) before andb) after the homoclinic tangency. these cells represents the error in computing the trajectory in

The dashed curve ifa) is the smooth torus. The homoclinic tan- OUr Process.
gency creates a chaotic attractor by breaking up the smooth torus. The procedure in which we remove all but one particle
when two or more particles end up in a singleell, can be
above the critical value, the torus cuts across the threg€garded as another type of reacti@ B— B, calledcoa-
dimensional stable manifolds of the period 13 orbits and it idescenceThis type of reaction itself plays an important role
stretched infinitely along the outéand inney branch of the in biological population dynamicg21], and agglomeration
unstable manifoldFig. 3b)]. This creates the fractal struc- Phenomena in environmental physics, physical chemistry,
ture of the attractor, on which the dynamics exhibits expo-and engineerin§22—25. We will discuss this in more detail
nential stretching and folding near the periodic points. Simiin the Sec. VII.
lar transition to chaos through the breaking of tori has been For all the simulations in the following sections, we used
described in other systeni$9,20). the parameter valued=3.2, W=0.8, R=1, k=2.72, w
=4 as in Fig. 1. This implies that the reagent partiBlés a
“bubble,” i.e., it is lighter than the surrounding fluid and
the buoyancy force pushes it upward.

Before tangency After tangency

IV. IMPLEMENTATION

Our finite-size particles are, however, active. Initially, we

ponsider a qatalyticA+ BﬁZB, type of activity. _For the V. CONTINUOUS FEEDING
implementation of the active process, we consider, in the
spirit of [1,3], a grid with resolutiore in the physicalspace. Since the reager is lighter than the reager, all the B

The difference between our work and the ones in previougparticles tend td/,= o regardless of their initial positions. If
studies is that the dynamics of the advected particles takese started with a distribution of particles in a vortex cell, all
place both in the configuration and the velocity spacethe particles eventually escape from that cell. This means
though the dynamics of the interface between the two rethat there is no bounded invariant set for the particle dynam-
agents takes place only in the configuration space. The states. The flow considered ifi1,3,5 has the property that al-
of the system is completely determined by the positions andnost all trajectories escape the interaction region, but there
velocities of theB patrticles, since we regard the reag@rdas  are trajectories that spend very long time near the invariant
the background fluid. Thus, in our model, the state of thechaotic saddle. If the reaction is faster than the escape rate of
system is represented by a list®particles, each of which is these trajectories, the system can sustain the re&gjedefi-
associated with aa cell and has a velocity vector. nitely. In our case, however, we need to keep feeding the
Then, a single step of our process proceeds as followseagent in order to sustain the reagent indefinitely, because
For each reagent partic we compute the trajectory of the the particle dynamics does not have any bounded invariant
particle with the initial position at the center of the corre- set.
spondinge cell and the initial velocity equal to the velocity =~ Consider the infinite array of vortex cells with reagént
associated with that particle. The integration is performed fobeing fed at a poinP. Numerically, we implement this by
time 7, and thes cell that contains the particle’s final position inserting a new particle at the poiRteveryAt=0.02(period
is now associated with that particle, and the final velocity ofof the flow T=2). If the reagentB were inactive, the par-
the particle becomes the new velocity associated with thaicles simply line up on the streak line from the poitFor
particle. We do this for alB particles. If two or more par- an active reagernB, however, it covers the streak line with
ticles from different cells move to the same cell, we simplylarger and larger thickness further up the vortex array, be-
keep the first particle in the cell, and remove all the othercause at every time, strips of thickness- are added on both
particles from the process. This choice of which particle doesides of the streak line, due to the reaction. Figure 4 shows a
survive is completely arbitrary, and we could have, for ex-snapshot of the distribution of the reagéhat t=216 with
ample, chosen at random. This change would not affect théhe time lagr=6.
global dynamics of the distribution of the reag@iAfter we For simplicity, let us consider the case wherés an in-

026216-5



NISHIKAWA, TOROCZKAI, GREBOGI, AND TE PHYSICAL REVIEW E 65 026216

8= 16 60 rmp (d)
£ 1 T <
" {58 Y, -
. f W (
0
~ X ©)
-1 56 N “
-4 55
‘ Y, /\%
154
53
N 0
' (©)
1 S
52 oINS
17% N\
FIG. 4. A snapshot of the distribution of the particlBsat t Y,
=216 with continuous feeding at the poiRt The time lagr=6,
the resolutions =0.01, and reaction range=0.01 are used.
teger multiple of the period(=2) of the flow field, i.e.,7 /
=nT. Then, the advection of the reagéhin a single step is 0 Y, 1

represented by theth iterated mag-". Although there is no _ o _
bounded attractor foF, the orbits forF converge to the sets  FIG. 5. Panelsa)—(f) show images of a straight line segment in
constructed by extending the attracting sets for the mappinganel(a) under(b) F*, (c) F®, (d) F*%, () F*°, and(f) F?°. The

F to the entire phase space using the identification describeg©ss in each panel indicates a period 4 point lying in the basin
in Sec. II. Hence, an orbit in the full phase space convergeg)”ndary surface. The chaotic attractor is also shown in panel
to the extension of either the chaotic attractor or the period 7o' "éference.
orbit in the hyperplan&’;=V;=0, shown in Fig. 1.

After injecting the reagenB for time 7, the reagenB
forms a curve from the poirR to its imageF"(P) under the
mappingF". If we continue injecting the reageBt the im-
age of this curve undee" is added to the curve. The entire
streak line can be constructed by adding the higher an
higher iterates of the original curve in this fashion.

boundary of the basins of the chaotic attractor and the peri-
odic orbit, some points on the segment go to the chaotic
attractor, and others go to the periodic orbit. Thus, the seg-
ment is stretched quite a bit under the mapping, effect of
&vhich can be seen readily in Fig. 5.

A cross in Fig. 5 is located at one of the unstable period 4

The streak line for our system takes a very complicate oints on the bas_in boundary s_urfac_e. We_ used the method
form, not only because of the chaotic attractor, but also pexnown as the basin straddle trajectories with Proper Interior

cause of the basin boundary between the chaotic attracté}ﬂax'm.um (P.IM) tnp:]e rgfmerr;)ent :jnethoﬁsz% to (c:jor;]wpute.
and the periodic orbit. In order to see why it is complicatedt e trajectories on the basin boundary and found that trajec-

. . ~ . tories on the boundary are attracted to this period 4 orbit. A
let us look at the evolution clfaﬂnefegnlent unﬁgﬂn Fig. point on the segment in Fig. 5 converges to the periodic
5, we plot the images undér*, F®, F'% F*, andF* of a  orbit, and hence the entire segment converges tatiseable
line segment shown in the middle of partel. Images under manifold of the same periodic orbit. One branch of the seg-
F are similar except that it would extend through the wholement converges to the chaotic attractor, and the other con-
Space instead of W|nd|ng around E(recall the boundary at nects to the stable period 7 orbit in the hyperp|a]ﬁ@s; Vl
the top and the bottom are identified with a reflection about= g andY;=1, V,;=0, while being stretched and folded. By
the lineY,=1/2). There are two kinds of attractors for the simply extending these images to the whole space instead of
mappingF, the chaotic attractor and the period 7 orbit on thewinding around inE, the streak line exhibits the same intri-
hyperplaneY;=V;=0. Since the segment straddles thecate structure as long as the initial segmiéram the injec-
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tion point P to its imageF"(P)] of the streak line straddles 6000

the basin boundary. In fact, the intricate, fractal form implies

that there must be infinitely many unstable periodic orbits on 5000

the boundary who provide the skeleton of a chaotic saddle @

The streak line traces out the unstable manifold of thiso 4000

saddle, which is, however, numerically indistinguishable E_

from that of the period 4 orbit. 5 3000
Now we consider the reaction that takes place every timeg

lag 7. Due to the reaction, the more often the initial segment £ 2000

is iterated, the thicker it becomes. L8} denote the initial 2

segment of the streak line connecting the pdirb F"(P) 1000

ande be the average width of the coveragg on each side

of Sy) by the reagentB over this segmentS,. Let S 0 -
=F"(S,) be theith iterate ofS, ande; be the average width 60 70

of the coverage by the reagddtover the segmerts; . Then Cell index

the reagenB covers the setU;_,S; in the limit t—oo.

. : . FIG. 6. The number of particles in each vortex cell for the
Note that the mapping" shrinks the width of the cover- : . )
Pping snapshots at=60,108,156,204 in the case of continuous feeding.

age of$ at the rateh,, t_he weakest local contraction rate._ The resolutione =0.01, the reaction range=0.01, and the time
Also note that the reaction can be regarded as adding strlqs o o

. . . . =6 d. The ti indicated in th h.
of width o on both sides of the existing strip of the reagBnt 4 T=0b are use © fimes are indicated In the grap
alongS, . Thus, the recursive relation for the average width

&; of the coverage 0§, by the reagenB is the asymptotic state can be analyzed by considering the sta-

tionary state under the mappirkginstead ofF. We pursue
g,1=€N"(gj+g0), (8) this in the following section.

where\;<0 is the the average weakest local contraction rate

alongS; andg is a geometrical factor that takes into account VI. CLOSED SYSTEM

the fact that the strips are not exactly straight line segments \we have seen in the preceding section that, in the limit of
and that they might overlap one anotligr=2 if there were .o and Y,=o, the distribution of reagerB in a vortex

no overlaps If \; approaches a limiting valug* <0, the  cell reaches a steady distribution. To analyze this further, we
average width should approach the corresponding limitingonsider the time evolution of the distribution in the closed

valuee*. By substitutings;=e*, \j=\* into Eq.(8) and  system, i.e., the time evolution under the advection dynamics

solving fore™, we get given by the mappind=. Recall that the mapping is de-
fined on the unit square, and the boundary condition on the
go . . D
gF = ——, 9) edges of the square for the corresponding flow is periodic
e M1 boundary with a reflection at the top and the bottom, and

o o _elastic collision with both side walls. We have two attractors,
which is the asymptotic width of the coverage of streak lineine chaotic attractor shown in Fig. 1, and the period 7 orbit
by the reaggnB. The limiting valuex* should be '_[he weak- lying in the planesy;=V,;=0 andY,=1, V,=0. The par-
est contracting Lyapunov exponent on the chaotic attractor gicjeg converge to one of the two attractors for almost all
on the chaotic saddle. initial conditions.

Now, the segments; get longer and longer under the  Eyen though the system is closed in the sense that there is
mappingF", extending through more and more vortex cells.no escape of particles, the dynamics of the reaction always
However, the local properties 6" along$; is the same if  finds a stationary state. Figure 7 shows examples of snap-
we consider the images & underF" instead. If we look at  shots of the distribution of the particles in the stationary
one of the cells 50-58 in Fig. 4 and compare them with Figstates for different values of the time lag They represent
5, it is evident that the reageBtis covering the entire un- three distinct regimes in theparameter space for which the
stable manifold of the chaotic saddle. system exhibits qualitatively different stationary states. For

In Fig. 6, we plot the number of particles in each vortexsmall values ofr up to about 8, the distribution of the par-
cell att=60,108,156,204. According to the above argumentticle seems to be smooth over the entire square. In this case,
the number of particles in a cell approaches an asymptotithe reaction is fast compared to the contraction to the chaotic
value fort—o and Y,—o°, because the coverage by the attractor and the escape from the chaotic saddle, resulting in
reagentB in a cell takes on a stationary form, in which the filling up the configuration space with a smooth distribution.
inflow of the reagent from the cell below together with the For large values of more than about 33, the distribution is
reaction balances the outflow to the cell above. In Fig. 6, theoncentrated on the chaotic attractor because of the domi-
number of particles drops to zero for higher vortex cells,nance of the contraction over the reaction. For the interme-
exhibiting transient behavior toward the stationary state. Al-diate values, the particles are distributed along the chaotic
though the number of particles quickly becomes too largettractor and the unstable manifold of the chaotic saddle on
and makes the simulation with continuous feeding difficult,the basin boundary. In this situation, the reaction is just slow
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FIG. 8. The dependence of the area covered by the re&gemt
the time lagr, under the mag-. We useds = o=0.02. The con-
tinuous curve is a fit according to Eq10) taken with \*
= —0.056, the value on the attractor, and widh=1.4, H=45.9.

where the prefactok is called the Hausdorff measure of the
invariant set. The formula has the same form as thdB8hf

1 except that here the escape rate is replaced by the average of
the weakest local Lyapunov exponenh*.

i - T 1(2-Dy) ;
FIG. 7. The distribution of the reageBiin the steady state after  BY inserting the relatiom; = (A;/+) "1 into Eq. (8),
20 reaction cycles fofa) 7=8, (b) 7=20, (c) 7="50, under the map ©ON€ can also derive the recursion relation for the afea

F. We usee=0=0.02, which means that the resolution of the covered by the reaged as
images is 15X 157.

Ai+l:e)\i(Z—Dl)T[Aiil./(Z—Dl)+gO_Hl/(Z—Dl)]Z—Dl_ (11)

enough to prevent the reagdhfrom filling up the space, but : - . . B
not slow enough to be completely dominated by the contrac--rakIng the limit of continuous reactionr(c —0), we get

tion.
It is worthwhile to mention here that these images in Fig.

7 are the snapshots at multiples of the period2 of the wherev=o¢/7 is the finite reaction front velocity, ang@

background flow. The distribution of the reagdhtactually —(D,~1)/(2—Dy,). This equation is also singular as the

changes with time. The fact that the system falls into a sta- ‘. "
tionary state means that the evolution of the distribution ione in[3,5]. Note thath* (2—D,) <0 because of the nega-

synchronized with the surrounding periodic flow field. tivity of A*. Thus the first term in Eq12) describes the loss

The reason for the system achieving a stationary state gue to contrqctior(dissipation) w.hile the second one repre-
the competition between phase volume contraction due tgents the gain due to the reaction.
dissipation and expansion due to the activity of the reagen% Flgure 8_Sh°WS the dependence of the ared’ () from
B. In the previous studies where open chaotic flows weré® Simulation. The pandg) shows the log-log plot of the
considered 1,3,5, the escape from the chaotic saddle bal-area against/(e * "—1) that according to Eq(10), re-
anced the production of reageBtto achieve the stationary Veals a straight line with slope equal to-D;. Here we
state. A simple replacement of the escape with the contradised\* = —0.056, the weakest contracting Lyapunov expo-
tion in the particle dynamics allows us to derive a formulanent on the chaotic attractor. The circles lie on a straight line
for the area covered by the reagéhin the stationary state. fairly well in a range of intermediate values of The least
We derive the formula here in a similar fashion agdrg].  square fit in this range results in the slope of about 0.6,
Let 2>D;>1 be the information dimension of an invariant Which translates t®,~ 1.4. Panelb) shows the plot of the
set(chaotic attractor or the saddlef the system. The num- area against along with a curve corresponding to the least
ber of boxes of size needed to cover typicéwith respectto ~ square fit from panefa).
the natural measure on the sebints of the invariant set The box-counting dimensiob, and the correlation di-
scales as-¢ D1, If the set is covered with strips of width mensionD, of the chaotic attractor are 1.6.02 and
e* in Eq. (9), the area covered by theseboxes scales as 1.48+0.01, respectively. The information dimensién of
~&27P1 for & not smaller thare*. In particular, by taking the chaotic attractor lies betwe&n andD,,. In fact, accord-
e=g*, we have ing to the Kaplan-Yorke conjectureD;=1—(\1/\))
=1.53. We have a small discrepancy with the above simula-
2D tion on the dependence of the area of coverage. This is due to
go 1 ) _ .
A*(r)zH(*—) , (10) the fact that the reagent is covering not only the chaotic
cMT—1 attractor, but also the unstable manifold of the chaotic saddle

A=\*(2-Dy) A+vg(2-D)HM2 PV AE (12
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on the basin boundary, as is seen in Fig. 7. We suspect that
the values of\* andD; are different on these two invariant
sets, and this explains the discrepancy.

As mentioned above, arountg=8, there is a transition
from a smooth distribution to a filamental distribution. This
is similar to the smooth-filamental transition described in
[2,4]. A difference from them is that we consider herewith an
autocatalytic reaction instead of a linear decay reaction with
source field. Nevertheless, some features such as direction
dependent Hider exponentgsmooth distribution in one di- "
rection and singular in anotheseem to be present in our 10 ) R > 3
system as well. 10 10 t 10

Also worth noticing is the so-calledmptying transition
[3] at aroundr= 33. In the steady state far< 33, the reagent

B is distributed over the unstable manifold of the chaotic . )
. . s random-shuffling model using the natural measure on the attractor,
saddle as can be seen in Figbj7 However, asr is in-

. . d the continuous line was computed from . The dashed
creased, less and less particles stay on the unstable manlforﬁr P Ep)

until no particles remain in the neighborhood of the manifold © Is the reference ine with slope.

for 7=33. The contraction due to the escape of the particlesuns of the simulation is shown in Fig.(fhe 7=2 case with
from the chaotic saddle along its unstable manifold is no+’s and ther=10 case withx’s).

longer balanced by the production due to the reaction in this In order to understand such results, we approximate the

FIG. 9. The time evolution of the particle density fer2 (+
symbolg and 7=10 (X symbolg. The starg*) correspond to the

range of the phase space. entire process with emndom-shufflenodel. Recall that if the
dynamics on the attractor is strongly mixing, the natural
VIl. COALESCENCE OF PARTICLES measure of are cell that intersects the attractor can be re-

garded as the probability for a typical trajectory on the at-

As we explained in Sec. IV, our model includes anothertractor to hit thes cell. With this analogy in mind, we con-
type of reactionB+B—B, which can be regarded as the sider the following model. Take the same number of balls as
coalescence of particles. Suppose that the particles represehe number of particles in the system. For each ball, ran-
a type of plankton that reproduces if there is enough food irdlomly choose arx cell where we put the ball in, with the
the neighborhood, but dies if there are too many others angrobability of choosing a® cell equal to the natural measure
not enough food. Thus, the coalescer@¢ B—B can be of that cell. If there is another ball in thatcell, the extra ball
thought of as the result of the competition for food. is discarded. Doing this for all the balls, at the end we will

This type of process with no other type of reaction in theend up with fewer balls in the cells. This completes a single
system is interesting in its own right, and it was consideredstep of the process. Such a process can be simulated on a
in [27]. We will summarize the results froff27] and de- computer as well, using a random number generator, and a

scribe an additional result in this section. typical run of such a simulation is also shown in Fig. 9, with
We consider the process consisting of two steps: the adstars(x).
vection under the flow on the phase sp&oeith appropriate Simplicity of the model allows us to rigorously compute

boundary conditions and the reaction of the coalescencthe evolution equation for the number of bali particles.
type. Regardless of the value of the dissipation in the Suppose we hava balls initially. Let p(n,k) be the prob-
dynamics of the particles makes the distribution of the parability that the number of balls ik after one step of the
ticles more and more concentrated on the attracting sets @rocessp(n,k) can be computed in the following way. The
the mapping~= as time elapses, because there is no produdgerobability thatn, balls are ini th box, n, balls are ini,th
tion of new particles in the system. The number of particlesox, . . . ,ny balls are ini,th box is

can only decrease. We may focus only on the chaotic attrac-

tor, because the particles attracted to periodic orbits quickly n! p"iph. .. pi
collapse onto a fewer number of particlesly as many as PEN I PYRERY (U S
the period of the orbjt ) ,
Once most of the particles come close to the chaotic atSUmming this over all £n,, ... ,ne=n such thatn, +---

tractor, the advection dynamics mixes the particles around M= @nd using multinomial formula, we get

within the neighborhood of the attractor. The mixing tendsto n-k+1  n-k+1
. o . . n!

make particles come within the reaction range and so it > ... 7 plig...pkg

. .. . . nns!---n |p| p| p| ngt+---+n,n
drives the decay of the number of the remaining particles in  ni=1 ne=1 Hp=H2: ko2 k
the system. Our simulation, in which we used a random ini-
tial distribution of the particles on the attractor according to
its natural measure, consistently shows that the decay fol-
lows the power lawt ! regardless of the value of the time K
lag 7. The decay of the particle densitthe number of par- _ —1)k-m et n
ticles divided by the initial number of particle$or typical mE=1 =1 LmECIk (P, i)

n!

Pil Pi B
:mfo Xm.“fO kka(X1+-..+Xk)n Kk
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where ly={iq, ... iy} and the last summation is over all L LD, + o5,
subsetL,={l;, ... I} of I,. The second equality can be =~ @ —————————— D,
proved by induction irk. p(n,k) is obtained by summing \Do-GD
this over all possible combinations of, . . . ,iy: 1.6 ’
k Y+ 0y
piNK)=2 2 (1™ X (py et p)" v Y D, + o,
ik m=1 LmClk 1 'm 1.5¢-- “‘P’\"ftAjJt" Kv: ‘/""M\M"‘l‘r"/ D22 P
k D,-c
N—m \‘w 2 — Op,
= —1km e p )"
m§=:1 ( ) k—m ng{:m} (pl1 plm) 1.4+
The last equality is due to the fact that a particular combina- 0 100 200 300

tion L, appears}_ M) times in the summation. By plugging
this into the usual definition of the expected valuekadnd

t (in units of 1)

reducing the resulting expression using combinatorial equali- FI!G. 10. Scaling exponent for the number density, in the case

ties, we get

n N
> kp(nk)=---=N-2> (1-p)"
k=1 i=1

of the closed systemr, is the estimated standard deviation from
the least squares fiD,,D, are the box-counting and correlation
dimensions of the chaotic attractor, respectively, a@%l and op,

are the corresponding standard deviations for the least squares fit
for y. Dg~1.66, D,~1.48, ch2=O.02, andoD2=O.01. Here we
took 7=50.

The equation for the one-step evolution of the number den-
sity can be derived using the above. Here the number density Our model is consistenf27] with the Smoluchowski

n(t) of the particles at timérefers to the number of particles
at timet divided by the initial numbeN of particles at time
zero. We takeN to be the number of cells that intersect the

attractor, i.e., we distribute particles uniformly over the at-
tractor at time 0. The evolution equation can then be writte

as
N

n(t+1)=1—%21(1—pi)’\‘”(0, (13)

wherep; is the natural measure of théh ¢ cell. Sincep;’s

equation from the theory of the agglomeration reactiBns
+B;—Bj;; [23,24. It is important to notice that these two
results independently verify our theory based on the random-
shuffling model.

n

VIIl. CONCLUSIONS

We have analyzed in this work the dynamics of autocata-
lytic reaction of small, but finite-size particles in the time-
periodic cellular vortex flow field. The inertia of the active
particles makes their dynamics dissipative and makes it pos-

are small, we may expand the terms in the summation on thgible to have chaotic attractors with fractal structure in their

right-hand side to obtain

dn_ )
gt= —Chno7,

where C=(N/2)=] ,p?. The solution of this equation is
simply (Ct+1)~ ! and it scales a$ 1. The numberC is
related to the dimensions of the attractor By= P2 Po,
where D, is the correlation dimension arid, is the box-
counting dimensiof28]. Using these, we find that the num-
ber density decay follows the scaling

n(e,t)~e Pat™ 1, (14

spatial component.

For the particular parameter values of the particle dynam-
ics that we considered, a chaotic attractor and a stable peri-
odic attractor coexist. The coexistence of the two attractors
turns out to be the reason why a typical streak line has a
complicated structure. Significant amount of stretching takes
place along a streak line, because it passes through a chaotic
saddle lying on the basin boundary surface of the two attrac-
tors, whose neighborhood is stretched along its unstable
manifold.

By continuously injecting the reager®, which goes
through the reactio’A+B—2B at the interface with the
background fluidA, the streak line is covered by the reagent
B with greater and greater thickness as the reagent traces

We verify this numerically as following. We measure the further up the streak line. Due to the contraction by the par-

decay of the number density for different valuessoffFor
each fixed, we find the scaling exponenty with ¢. In Fig.
10, we plot these scaling exponents as a function of time
One can see that, except for the transient re¢somallt) and
the region where(e,t) is too small(larget), exponents are
close to the numerically computed value®§=1.48 of the

ticle dynamics, the average thickness approaches the
asymptotic value.

To analyze the asymptotic distribution fgp—, we in-
troduced the appropriate boundary conditions on the phase
spacek and considered the active dynamics. We showed that
for intermediate values of the time lagthe coverage by the

correlation dimension of the attractor. For the calculation ofreagenB in the stationary state follows similar formula as in

exponents—vy, we use seven values af in the interval
[0.005,0.05% equally spaced in the logarithmic scale.

the case of ideal tracers, except that the escape rate from the
chaotic saddle is replaced by the weakest contracting average
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Lyapunov exponent on the chaotic attractor and on the chaticle dynamics in their limit. The same effect is much stron-
otic saddle on the basin boundary. For smaller values, of ger in our case, where the inert tracer problefn=(¢) is
there occurs an interesting transition from singular distribunonchaotic, but at order 1 values of the inertia paramiter
tion of particles to a smooth one. This is similar to the|arge scale chaotic attractors appear. In both approaches,
smooth-filamental transition studied j@,4], but they have clear accumulation of particles takes place. Therefore, we
Only studied the linear decay reaction with source field. Fur'condude that enhancement of chemical activity can be ex-
ther investigation into the relationship to their system is apected in random flows, too, due to particle inertia.
topic of future work. Finally, in the case of coalescence reaction, we have

The problem we studied in this paper is much more comshown, for sufficiently slow reactions, that the decay of num-
plex than the corresponding problem with ideal tracersper density follows a universal scaling lawt™t. This
mainly due to the fact that it possesses attractors and thajgrees well with our analytical result using a random-shuffle
more than one attractors coexist. Consequently, we obseryfodel. Furthermore, we have also verified the scaling with
different regimes in the- parameter space. Since the flow is the reaction range predicted from our analytical result
closed, the emptying transition observed in the case of opeghrough a direct numerical simulation.
flows occurs in a different context, as emptyiingm a cha-
otic saddle to an attractor
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