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A small ~but finite-size! spherical particle advected by fluid flows obeys equations of motion that are
inherently dissipative, due to the Stokes drag. The dynamics of the advected particle can be chaotic even with
a flow field that is simply time periodic. Similar to the case of ideal tracers, whose dynamics is Hamiltonian,
chemical or biological activity involving such particles can be analyzed using the theory of chaotic dynamics.
Using the example of an autocatalytic reaction,A1B→2B, we show that the balance betweendissipationin
the particle dynamics andproductiondue to reaction leads to a steady state distribution of the reagent. We also
show that, in the case of coalescence reaction,B1B→B, the decay of the particle density obeys a universal
scaling law as approximatelyt21 and that the particle distribution becomes restricted to a subset with fractal
dimensionD2 , whereD2 is the correlation dimension of the chaotic attractor in the particle dynamics.

DOI: 10.1103/PhysRevE.65.026216 PACS number~s!: 05.45.2a, 47.70.Fw, 87.23.Cc
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I. INTRODUCTION

Active processes under chaotic advection, such as the
namics of growing population of plankton or evolving dist
bution of active chemicals in environmental flows, have
tracted significant amount of attention in recent years@1–13#.
These previous studies have shown that the chaotic sa
for the Lagrangian dynamics in the open flows can act a
catalyst for the chemical reaction or biological reproductio
The theory of chaotic dynamics was used to show that
catalytic effect, due to the fractality of the chaotic saddle a
its unstable manifold, introduces a term in the equation
the reaction kinematics that depends on the chaotic pro
ties of the Lagrangian dynamics.

In these studies, however, the particles were assume
be point particles without mass, which traces a fluid elem
perfectly. This assumption, of course, is an oversimplifi
tion of the reality—especially when the biological activity
concern is such as that of a plankton population. A m
realistic assumption would be that of a spherical particle t
is small, but it has finite size, and it is subject to the forc
exerted by the fluid surrounding it. The equations of mot
for such particles were derived by Maxey@14# for low Rey-
nolds number, and they include terms representing not o
the Stokes drag force and buoyancy force, but also the ad
mass effect, Basset history effect, and the Faxen correcti
Even in the situation where the Basset history term and
Faxen corrections can be ignored, the dynamics of the
ticle is strikingly different from the case of a point partic
without mass. While the dynamics of an ideal tracer in
incompressible, stationaryn-dimensional flow is area pre
1063-651X/2002/65~2!/026216~11!/$20.00 65 0262
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serving in itsn-dimensional phase space, the dynamics o
small particle in the same flow is contracting in i
2n-dimensional phase space. In other words, the dynamic
finite size particles isdissipative.

In this paper, we choose the two-dimensional oscillat
cellular vortex flow field represented by a simple strea
function c:

c~Y,t !5
U0L

p
~11k sinvt !sin

pY1

L
sin

pY2

L
, ~1!

whereY5(Y1 ,Y2) is the position,L is the size of a vortex
cell, andU0 gives the maximum velocity of the flow field fo
k50. Figure 1 shows the streamlines, or the contour plo
the stream function in Eq.~1! as solid curves. The time
independent version of the same flow field was extensiv
studied by Maxey@15#, in which it was found that the par
ticles subjected to such flow field converge asymptotica
either to an equilibrium point or to a smooth curve extend
through the vortex cells. To model more realistic situatio
we impose a simple periodic time dependence in the stre
function by varying the vorticity of each vortex sinusoidall
It turns out that such a simple time dependence can make
dynamics of a small particle much more interesting althou
the motion of pointlike tracers would still follow the stream
lines of Eq.~1!. We find that for certain range of paramet
values, the asymptotic behavior of a small particle of fin
size can even be chaotic and exhibit an attractor whose
jection onto the physical coordinate space is a fractal
Such a situation is shown in Fig. 1.

The goal of this paper is to show that such fractal attr
tors in the coordinate space also act as catalysts for the
action, just as in the case of ideal tracers, even though
©2002 The American Physical Society16-1
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dynamics of the particles is qualitatively different. The k
element is to replace the escape rate from a chaotic sa
along its unstable manifold for the case of ideal tracers w
the smallest average contraction rate on the attractor in
case. However, things are not as simple because the pa
dynamics can have multiple attractors, as is the case with
flow field we are considering.

This paper is organized as follows. In Sec. II, we give t
equation of motion for a small spherical particle in the osc
lating cellular vortex flow field, and introduce the associa
discrete dynamical system for later analysis. In Sec. II,
discuss the attractors for the dynamics, along with
mechanism of their births. In Sec. IV, we give detail of t
implementation of our model system. In Sec. V, we consi
the reaction of autocatalytic type,A1B→2B, with continu-
ous feeding of the reagentB. In Sec. VI, we consider the
reaction in closed system, to analyze the asymptotic rea
distribution. Finally, in Sec. VII, we discuss the coalescen
type of reaction,B1B→B, and Sec. VIII is reserved fo
conclusions.

II. EQUATION OF MOTION

We consider the motion of a small, spherical particle
the flow field of an infinite array of cellular vortices as di
cussed by Maxey@15#, but with a time dependence to allo
for a nontrivial chaotic behavior. The flow is two dimen
sional, incompressible, and time periodic, and is represe
by the stream function in Eq.~1!. Notice that the introduction
of a simple periodicity in time, as the factor (11k sinvt),
does not change the streamlines. Yu, Grebogi, and Ott@16#

FIG. 1. Trajectories on the chaotic~dots! and the period 7

~crosses! attractors of the stroboscopic mapF̃ with A53.2, R51,
W50.8, k52.72. In the background, level curves of the strea
function in Eq.~1! are plotted for reference. The gravityg points
downward, and trajectories move up on average because par
are lighter than the surrounding fluid.
02621
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obtained the equations of motion for a particle in the flo
field defined by Eq.~1!, but we will briefly go through the
derivation here for completeness.

We follow the derivation of Maxey in@15#, except that the
time dependence of the flow field is taken into account. T
equation of motion for the dynamics of a small rigid sphe
cal particle with radiusa @14# is

mp

dV

dt
5~mp2mF!g1mF

Du

Dt U
Y~ t !

2
1

2
mF

d

dt S V2u~Y,t !

2
1

10
a2¹2uD26pamX~ t !

26pa2mE
0

t

dt
dX~t!/dt

Apn~ t2t!
, ~2!

where

X~ t !5V~ t !2u„Y~ t !,t…2 1
6 a2¹2u,

Y(t) and V(t) are the position and velocity of the partic
respectively,u(Y,t) is the flow field in the positionY of the
particle at timet. Heremp is the mass of the particle,mF is
the mass of the displaced fluid, andn is the kinematic vis-
cosity. The termmF(Du/Dt)uY(t) is the acceleration of the
fluid element in the positionY(t) at timet and represents the
force exerted on the particle by the surrounding fluid. Sin
the particle is not an ideal tracer, it is important to distingu
between the Lagrangian derivative

Du

Dt
5

]u

]t
1u•“u

taken along the trajectory of a fluid element and

du

dt
5

]u

]t
1V•“u

taken along the trajectory of the particle. The term (mp
2mF)g is the buoyancy force, the term

2
1

2
mF

d

dt S V2u2
1

10
a2¹2uD

represents the added mass effect, the term26pamX(t) is
the Stokes drag force,

26pa2mE
0

l

dt
dX/dt

Apn~ t2t!

is called the Basset history term, and the terms involv
a2¹2u are the so-called Faxen corrections for the nonu
form flow field. Equation~2! is valid for small particles at
low Reynolds numbers of up to about 250.

It was pointed out by Auton, Hunt, and Prud’homme@17#
that the correct form of the added mass term should be

les
6-2
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2
1

2
mFFdV

dt
2

D

Dt S u2
1

10
a2¹2uD G .

This correction, as mentioned in@14#, is small for low Rey-
nolds number, and hence would not change the qualita
results to be described below.

In the case of the flow field represented by the stre
function ~1!, the Faxen corrections simplify as

a2¹2u52
2a2u

L2 ,

so the effect in the Eq.~2! is equivalent to decreasingu by a
small amount;(a/L)2. Thus, the correction is unlikely to
affect the qualitative behavior of the system and we neg
these terms in Eq.~2!. The Basset history term is also n
glected since it can be shown@18# that if the fluid inertia
effect is included, then the Basset history term is less sign
cant than the other terms. Taking these into account,
equation of motion for the particles in the time periodic c
lular flow field ~1! is

S mp1
mF

2 D dV~ t !

dt
5~mp2mF!g16pam@u~Y,t !2V#

1mFu•“u1
1

2
mFV•“u1

3

2
mF

]u

]t
,

which only differs from the one in@15# by the last term.
After making the variables dimensionless by

Y* 5
Y

L
, V* 5

V

U0
u* 5

u

U0
, t* 5

tU0

L
,

and suppressing the asterisks, we get

dV~ t !

dt
5A@u~Y,t !2V1W#1RS u1

1

2
VD •“u1

3

2
R

]u

]t
,

~3!

where

A5
6pamL

~mp1 1
2 mF!U0

, R5
mF

mp1 1
2 mF

,

and

W5
mp2mF

6papU0
g.

The parameterA represents the amount of damping, or t
effect of the inertia of the particle. The limit ofA→` cor-
responds to the case of point particles with no inertia~since
mF and mP are proportional toa3!. R is the mass ratio pa
rameter andR, 2

3 corresponds to aerosols~heavier than the
fluid!, and R. 2

3 corresponds to bubbles~lighter than the
fluid!. W is the scaled particle settling velocity for still fluid
The dimensionless stream function is
02621
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c* ~Y,t !5
1

p
~11k sinv* t* !sinpY1* sinpY2* ,

where

v* 5
vL

U0
,

so, the dimensionless velocity field, after suppressing the
terisks, is

u~Y,t !5S ]c~Y,t !

]Y2

2
]c~Y,t !

]Y1

D
5S ~11k sinvt !sinpY1 cospY2

2~11k sinvt !cospY1 sinpY2
D .

By plugging this into Eq.~3!, we get the full equations o
motion

dY1

dt
5V1 , ~4!

dY2

dt
5V2 , ~5!

dV1

dt
52AV11A~11k sinvt !sinpY1 cospY2

1
R

2
~11k sinvt !~V1 cospY1 cospY2

2V2 sinpY1 sinpY2!1R~11k sinvt !2

3sinpY1 cospY11
3R

2
vk cosvt

3sinpY1 cospY2 , ~6!

dV2

dt
52AV22A~11k sinvt !cospY1 sinpY21AW

1
R

2
~11k sinvt !~V1 sinpY1 sinpY2

2V2 cospY1 cospY2!1R~11k sinvt !2

3sinpY1 cospY22
3R

2
vk cosvt

3cospY1 sinpY2 . ~7!

One can see that the Maxey equation is immediately rec
ered fork50.

The terms2AV1 and2AV2 in the equations indicate tha
the flow defined by Eqs.~4!–~7! in the phase space is diss
pative. A straightforward calculation shows that the div
gence of the flow in the phase space is22A, so a volume
6-3
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NISHIKAWA, TOROCZKAI, GREBOGI, AND TÉL PHYSICAL REVIEW E 65 026216
element in the phase spaceR4 shrinks exponentially unde
the flow ase22At. Note that in the limitA→`, where the
dissipation is infinitely fast, one can see from Eq.~3! that the
flow dynamics collapses onto the two-dimensional surf
defined byV5u(Y,t)1W in the phase space. The proje
tion of this dynamics onto theY-coordinate space is volum
preserving, because the fluid flow is incompressible, an
corresponds to the dynamics of ideal tracers without any
ertia effect. The goal of this paper is to investigate the eff
of the dissipation on the reaction dynamics.

Since the system~4!–~7! describing the particle dynamic
is a periodically forced system, it is natural to consider
stroboscopic section defined by the time-T map of the flow,
whereT is the period of the flow. We denote this map byF.
It is easy to check that if„Y1(t),Y2(t),V1(t),V2(t)…T ~T de-
notes transpose! is a solution of Eqs.~4!–~7!, then

S Y1~ t !12n
Y2~ t !12m

V1~ t !
V2~ t !

D , S Y1~ t !11
Y2~ t !11

V1~ t !
V2~ t !

D ,

S 22Y1~ t !
Y2~ t !

2V1~ t !
V2~ t !

D , S 12Y1~ t !
Y2~ t !11
2V1~ t !
V2~ t !

D
are also solutions, wherem,n are integers. After identifying
all these points with„Y1(t),Y2(t),V1(t),V2(t)…T, the map-
ping F can be regarded as being defined onE
5@0,1#3@0,1#3R2 ~R2 are the velocity components!. We
denote this mapping byF̃, in order to distinguish it fromF
defined on the whole phase space. In fact, the original
namics represented by Eqs.~4!–~7! can also be defined onE,
by reflecting everything aboutY151/2 ~that is, Y1→1
2Y1 , V1→2V1! when the particle crosses the top or bo
tom, and letting the particle bounce off the side walls ela
cally. Then,F̃ is the time-T mapping of this flow restricted
to E.

Using the identification described above, any invariant
for F̃, including periodic orbits, chaotic attractors, and ba
boundaries, can be extended to the whole phase space.
orbit converges to an invariant set forF̃, the corresponding
orbit for F has to converge to the extension of the invaria
set in the whole space.

III. PARTICLE DYNAMICS

Figure 1 shows the projection onto the configurati
space of the chaotic attractor for the mappingF̃ with the
parameter valuesA53.2, W50.8, R51, k52.72, v5p
~this means that the forcing period isT52!. W.0, R.2/3
implies that the particles are lighter than the surround
fluid. Numerical estimates of its average Lyapunov exp
nents are l150.030, l2520.056, l3523.119, l4
523.256. The estimates of the box-counting dimension
the correlation dimension of the projection are 1.6660.02
02621
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and 1.4860.01, respectively. In addition to the chaotic a
tractor, there is a stable periodic orbit of period 7 on t
hyperplanes defined byY15V150 andY151, V150. Ap-
parently, these are the only attracting invariant sets for
particular combination of parameter values.

The chaotic attractor is created from a smooth torus, or
invariant curve that is shown in Fig. 2~a!. As the parameterk
is increased through the critical value'2.6939, the torus
breaks up and turns into a chaotic attractor@Fig. 2~b!#. The
closer k is to the critical value, the longer the trajecto
spends time on the ‘‘ghost’’ of the torus, and it visits oth
parts of the chaotic attractor less often. The panels~c! and~d!
in Fig. 2 show blow ups of the neighborhood of period
points to see the transition more clearly.

The essential element in the transition to chaos from
smooth torus is the period 13 orbit indicated in Fig. 2 as3’s.
It has three stable directions and one unstable direct
Whenk is below the critical value, the unstable manifold
this orbit does not intersect the stable manifold. The situat
is schematically illustrated in Fig. 3~a!. The smooth torus lies
between the stable and unstable manifolds, as indicated
the dashed curve in the figure. Ask is increased closer to th
critical value, the unstable manifold gets more and m
crumpled, and the torus gets crumpled as a conseque
since it is squeezed between the stable and unstable m
fold. At the critical value ofk, the torus, as well as the un
stable manifold, is tangent to the stable manifold. If it
tangent at one point, it must be tangent at infinitely ma
points that accumulate on the periodic point because th
points of tangency are on the stable manifold. As soon ask is

FIG. 2. Attracting sets~a! before (k52.6939) and~b! after (k
52.6940) tangency.~c! and~d! show the blowup of the small rect
angles shown in~a! and~b!, respectively. The other parameters a
A53.2, W50.8, R51, v5p; and in each picture, a trajectory o
length 30 000 is used after discarding the first 3000 iterations.
crosses indicate the unstable period 13 orbit involved in the
gency.
6-4
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FINITE-SIZE EFFECTS ON ACTIVE CHAOTIC ADVECTION PHYSICAL REVIEW E65 026216
above the critical value, the torus cuts across the th
dimensional stable manifolds of the period 13 orbits and i
stretched infinitely along the outer~and inner! branch of the
unstable manifold@Fig. 3~b!#. This creates the fractal struc
ture of the attractor, on which the dynamics exhibits exp
nential stretching and folding near the periodic points. Sim
lar transition to chaos through the breaking of tori has b
described in other systems@19,20#.

IV. IMPLEMENTATION

Our finite-size particles are, however, active. Initially, w
consider a catalytic,A1B→2B, type of activity. For the
implementation of the active process, we consider, in
spirit of @1,3#, a grid with resolution« in the physicalspace.
The difference between our work and the ones in previ
studies is that the dynamics of the advected particles ta
place both in the configuration and the velocity spa
though the dynamics of the interface between the two
agents takes place only in the configuration space. The s
of the system is completely determined by the positions
velocities of theB particles, since we regard the reagentA as
the background fluid. Thus, in our model, the state of
system is represented by a list ofB particles, each of which is
associated with an« cell and has a velocity vector.

Then, a single step of our process proceeds as follo
For each reagent particleB, we compute the trajectory of th
particle with the initial position at the center of the corr
sponding« cell and the initial velocity equal to the velocit
associated with that particle. The integration is performed
time t, and the« cell that contains the particle’s final positio
is now associated with that particle, and the final velocity
the particle becomes the new velocity associated with
particle. We do this for allB particles. If two or more par-
ticles from different cells move to the same cell, we simp
keep the first particle in the cell, and remove all the oth
particles from the process. This choice of which particle d
survive is completely arbitrary, and we could have, for e
ample, chosen at random. This change would not affect
global dynamics of the distribution of the reagentB. After we

FIG. 3. Schematic drawing of stable and unstable manifolds
the period 13 orbit~a! before and~b! after the homoclinic tangency
The dashed curve in~a! is the smooth torus. The homoclinic tan
gency creates a chaotic attractor by breaking up the smooth to
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evolved all the particlesB for a timet, we convert toB all
the A cells within a distances of a B cell. For each cell
converted to aB cell, a newB particle is created with the
same velocity as its parent particle. The parameters is called
the reaction range. This completes one cycle of our activit
process.

The time periodt for which the particles are subjected
advection between successive reactions, is called thereac-
tion time lag. Since we use thes neighborhood for the reac
tion distance, the reaction front movess per timet, sos/t is
the reaction front velocity. The limit ofs,t→0 with s/t
fixed, corresponds to the continuous reaction.

Since we initialize the trajectory of the particles for ea
cycle at the center of the« cell, and since the trajectory doe
not necessarily arrive at the center of an« cell, the size« of
these cells represents the error in computing the trajector
our process.

The procedure in which we remove all but one partic
when two or more particles end up in a single« cell, can be
regarded as another type of reaction,B1B→B, calledcoa-
lescence. This type of reaction itself plays an important ro
in biological population dynamics@21#, and agglomeration
phenomena in environmental physics, physical chemis
and engineering@22–25#. We will discuss this in more detai
in the Sec. VII.

For all the simulations in the following sections, we us
the parameter valuesA53.2, W50.8, R51, k52.72, v
5p as in Fig. 1. This implies that the reagent particleB is a
‘‘bubble,’’ i.e., it is lighter than the surrounding fluidA and
the buoyancy force pushes it upward.

V. CONTINUOUS FEEDING

Since the reagentB is lighter than the reagentA, all theB
particles tend toY25` regardless of their initial positions. I
we started with a distribution of particles in a vortex cell, a
the particles eventually escape from that cell. This me
that there is no bounded invariant set for the particle dyna
ics. The flow considered in@1,3,5# has the property that al
most all trajectories escape the interaction region, but th
are trajectories that spend very long time near the invar
chaotic saddle. If the reaction is faster than the escape ra
these trajectories, the system can sustain the reagentB indefi-
nitely. In our case, however, we need to keep feeding
reagentB in order to sustain the reagent indefinitely, becau
the particle dynamics does not have any bounded invar
set.

Consider the infinite array of vortex cells with reagentB
being fed at a pointP. Numerically, we implement this by
inserting a new particle at the pointP everyDt50.02~period
of the flow T52!. If the reagentB were inactive, the par-
ticles simply line up on the streak line from the pointP. For
an active reagentB, however, it covers the streak line wit
larger and larger thickness further up the vortex array,
cause at every timet, strips of thicknesss are added on both
sides of the streak line, due to the reaction. Figure 4 show
snapshot of the distribution of the reagentB at t5216 with
the time lagt56.

For simplicity, let us consider the case wheret is an in-

f

s.
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NISHIKAWA, TOROCZKAI, GREBOGI, AND TÉL PHYSICAL REVIEW E 65 026216
teger multiple of the periodT(52) of the flow field, i.e.,t
5nT. Then, the advection of the reagentB in a single step is
represented by thenth iterated mapFn. Although there is no
bounded attractor forF, the orbits forF converge to the set
constructed by extending the attracting sets for the mapp
F̃ to the entire phase space using the identification descr
in Sec. II. Hence, an orbit in the full phase space conver
to the extension of either the chaotic attractor or the perio
orbit in the hyperplaneY15V150, shown in Fig. 1.

After injecting the reagentB for time t, the reagentB
forms a curve from the pointP to its imageFn(P) under the
mappingFn. If we continue injecting the reagentB, the im-
age of this curve underFn is added to the curve. The entir
streak line can be constructed by adding the higher
higher iterates of the original curve in this fashion.

The streak line for our system takes a very complica
form, not only because of the chaotic attractor, but also
cause of the basin boundary between the chaotic attra
and the periodic orbit. In order to see why it is complicate
let us look at the evolution of a line segment underF̃. In Fig.
5, we plot the images underF̃4, F̃8, F̃12, F̃16, andF̃20 of a
line segment shown in the middle of panel~a!. Images under
F are similar except that it would extend through the wh
space instead of winding around inE ~recall the boundary a
the top and the bottom are identified with a reflection ab
the line Y151/2!. There are two kinds of attractors for th
mappingF̃, the chaotic attractor and the period 7 orbit on t
hyperplaneY15V150. Since the segment straddles t

FIG. 4. A snapshot of the distribution of the particlesB at t
5216 with continuous feeding at the pointP. The time lagt56,
the resolution«50.01, and reaction ranges50.01 are used.
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boundary of the basins of the chaotic attractor and the p
odic orbit, some points on the segment go to the cha
attractor, and others go to the periodic orbit. Thus, the s
ment is stretched quite a bit under the mapping, effect
which can be seen readily in Fig. 5.

A cross in Fig. 5 is located at one of the unstable perio
points on the basin boundary surface. We used the me
known as the basin straddle trajectories with Proper Inte
Maximum ~PIM! triple refinement method@26# to compute
the trajectories on the basin boundary and found that tra
tories on the boundary are attracted to this period 4 orbi
point on the segment in Fig. 5 converges to the perio
orbit, and hence the entire segment converges to theunstable
manifold of the same periodic orbit. One branch of the s
ment converges to the chaotic attractor, and the other c
nects to the stable period 7 orbit in the hyperplanesY15V1
50 andY151, V150, while being stretched and folded. B
simply extending these images to the whole space instea
winding around inE, the streak line exhibits the same intr
cate structure as long as the initial segment@from the injec-

FIG. 5. Panels~a!–~f! show images of a straight line segment

panel~a! under~b! F̃4, ~c! F̃8, ~d! F̃12, ~e! F̃16, and ~f! F̃20. The
cross in each panel indicates a period 4 point lying in the ba
boundary surface. The chaotic attractor is also shown in pane~a!
for reference.
6-6
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tion point P to its imageFn(P)# of the streak line straddle
the basin boundary. In fact, the intricate, fractal form impl
that there must be infinitely many unstable periodic orbits
the boundary who provide the skeleton of a chaotic sad
The streak line traces out the unstable manifold of t
saddle, which is, however, numerically indistinguishab
from that of the period 4 orbit.

Now we consider the reaction that takes place every t
lag t. Due to the reaction, the more often the initial segm
is iterated, the thicker it becomes. LetS0 denote the initial
segment of the streak line connecting the pointP to Fn(P)
and«0 be the average width of the coverage~«0 on each side
of S0! by the reagentB over this segmentS0 . Let Si
5Fni(S0) be thei th iterate ofS0 and« i be the average width
of the coverage by the reagentB over the segmentSi . Then
the reagentB covers the setø i 50

` Si in the limit t→`.
Note that the mappingFn shrinks the width of the cover

age ofSi at the ratel i , the weakest local contraction rat
Also note that the reaction can be regarded as adding s
of width s on both sides of the existing strip of the reagenB
alongSi . Thus, the recursive relation for the average wid
« i of the coverage ofSi by the reagentB is

« i 115el it~« i1gs!, ~8!

wherel i,0 is the the average weakest local contraction r
alongSi andg is a geometrical factor that takes into accou
the fact that the strips are not exactly straight line segme
and that they might overlap one another~g52 if there were
no overlaps!. If l i approaches a limiting valuel*,0, the
average width should approach the corresponding limit
value «* . By substituting« i5«* , l i5l* into Eq. ~8! and
solving for «* , we get

«* 5
gs

e2l* t21
, ~9!

which is the asymptotic width of the coverage of streak l
by the reagentB. The limiting valuel* should be the weak
est contracting Lyapunov exponent on the chaotic attracto
on the chaotic saddle.

Now, the segmentsSi get longer and longer under th
mappingFn, extending through more and more vortex ce
However, the local properties ofFn along Si is the same if
we consider the images ofS0 underF̃n instead. If we look at
one of the cells 50–58 in Fig. 4 and compare them with F
5, it is evident that the reagentB is covering the entire un
stable manifold of the chaotic saddle.

In Fig. 6, we plot the number of particles in each vort
cell at t560,108,156,204. According to the above argume
the number of particles in a cell approaches an asympt
value for t→` and Y2→`, because the coverage by th
reagentB in a cell takes on a stationary form, in which th
inflow of the reagent from the cell below together with t
reaction balances the outflow to the cell above. In Fig. 6,
number of particles drops to zero for higher vortex ce
exhibiting transient behavior toward the stationary state.
though the number of particles quickly becomes too la
and makes the simulation with continuous feeding difficu
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the asymptotic state can be analyzed by considering the
tionary state under the mappingF̃ instead ofF. We pursue
this in the following section.

VI. CLOSED SYSTEM

We have seen in the preceding section that, in the limi
t→` and Y25`, the distribution of reagentB in a vortex
cell reaches a steady distribution. To analyze this further,
consider the time evolution of the distribution in the clos
system, i.e., the time evolution under the advection dynam
given by the mappingF̃. Recall that the mappingF̃ is de-
fined on the unit square, and the boundary condition on
edges of the square for the corresponding flow is perio
boundary with a reflection at the top and the bottom, a
elastic collision with both side walls. We have two attracto
the chaotic attractor shown in Fig. 1, and the period 7 o
lying in the planesY15V150 andY151, V150. The par-
ticles converge to one of the two attractors for almost
initial conditions.

Even though the system is closed in the sense that the
no escape of particles, the dynamics of the reaction alw
finds a stationary state. Figure 7 shows examples of sn
shots of the distribution of the particles in the stationa
states for different values of the time lagt. They represent
three distinct regimes in thet-parameter space for which th
system exhibits qualitatively different stationary states. F
small values oft up to about 8, the distribution of the pa
ticle seems to be smooth over the entire square. In this c
the reaction is fast compared to the contraction to the cha
attractor and the escape from the chaotic saddle, resultin
filling up the configuration space with a smooth distributio
For large values oft more than about 33, the distribution
concentrated on the chaotic attractor because of the do
nance of the contraction over the reaction. For the interm
diate values, the particles are distributed along the cha
attractor and the unstable manifold of the chaotic saddle
the basin boundary. In this situation, the reaction is just s

FIG. 6. The number of particles in each vortex cell for t
snapshots att560,108,156,204 in the case of continuous feedi
The resolution«50.01, the reaction ranges50.01, and the time
lag t56 are used. The times are indicated in the graph.
6-7
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NISHIKAWA, TOROCZKAI, GREBOGI, AND TÉL PHYSICAL REVIEW E 65 026216
enough to prevent the reagentB from filling up the space, bu
not slow enough to be completely dominated by the contr
tion.

It is worthwhile to mention here that these images in F
7 are the snapshots at multiples of the periodT52 of the
background flow. The distribution of the reagentB actually
changes with time. The fact that the system falls into a s
tionary state means that the evolution of the distribution
synchronized with the surrounding periodic flow field.

The reason for the system achieving a stationary stat
the competition between phase volume contraction due
dissipation and expansion due to the activity of the reag
B. In the previous studies where open chaotic flows w
considered@1,3,5#, the escape from the chaotic saddle b
anced the production of reagentB to achieve the stationar
state. A simple replacement of the escape with the cont
tion in the particle dynamics allows us to derive a formu
for the area covered by the reagentB in the stationary state

We derive the formula here in a similar fashion as in@3,5#.
Let 2.D1.1 be the information dimension of an invaria
set ~chaotic attractor or the saddle! of the system. The num
ber of boxes of size« needed to cover typical~with respect to
the natural measure on the set! points of the invariant se
scales as;«2D1. If the set is covered with strips of width
«* in Eq. ~9!, the area covered by these« boxes scales a
;«22D1 for « not smaller than«* . In particular, by taking
«5«* , we have

A* ~t!5HS gs

c2l* t21
D 22D1

, ~10!

FIG. 7. The distribution of the reagentB in the steady state afte
20 reaction cycles for~a! t58, ~b! t520, ~c! t550, under the map

F̃. We use«5s50.02, which means that the resolution of th
images is 1573157.
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where the prefactorH is called the Hausdorff measure of th
invariant set. The formula has the same form as that of@3#,
except that here the escape rate is replaced by the avera
the weakest local Lyapunov exponent2l* .

By inserting the relation« i5(Ai /H)1/(22D1) into Eq. ~8!,
one can also derive the recursion relation for the areaAi
covered by the reagentB as

Ai 115el i ~22D1!t@Ai
1/~22D1!

1gsH1/~22D1!#22D1. ~11!

Taking the limit of continuous reaction (t,s20), we get

Ȧ5l* ~22D1!A1vg~22D1!H1/~22D1!A2b, ~12!

where v5s/t is the finite reaction front velocity, andb
5(D121)/(22D1). This equation is also singular as th
one in @3,5#. Note thatl* (22D1),0 because of the nega
tivity of l* . Thus the first term in Eq.~12! describes the loss
due to contraction~dissipation! while the second one repre
sents the gain due to the reaction.

Figure 8 shows thet dependence of the areaA* (t) from
the simulation. The panel~a! shows the log-log plot of the
area againsts/(e2l* t21) that according to Eq.~10!, re-
veals a straight line with slope equal to 22D1 . Here we
usedl* 520.056, the weakest contracting Lyapunov exp
nent on the chaotic attractor. The circles lie on a straight l
fairly well in a range of intermediate values oft. The least
square fit in this range results in the slope of about 0
which translates toD1'1.4. Panel~b! shows the plot of the
area againstt along with a curve corresponding to the lea
square fit from panel~a!.

The box-counting dimensionD0 and the correlation di-
mension D2 of the chaotic attractor are 1.6660.02 and
1.4860.01, respectively. The information dimensionD1 of
the chaotic attractor lies betweenD0 andD2 . In fact, accord-
ing to the Kaplan-Yorke conjecture,D1512(l1 /l2)
.1.53. We have a small discrepancy with the above simu
tion on the dependence of the area of coverage. This is du
the fact that the reagent is covering not only the chao
attractor, but also the unstable manifold of the chaotic sad

FIG. 8. The dependence of the area covered by the reagentB on

the time lagt, under the mapF̃. We used«5s50.02. The con-
tinuous curve is a fit according to Eq.~10! taken with l*
520.056, the value on the attractor, and withD151.4, H545.9.
6-8
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FINITE-SIZE EFFECTS ON ACTIVE CHAOTIC ADVECTION PHYSICAL REVIEW E65 026216
on the basin boundary, as is seen in Fig. 7. We suspect
the values ofl* andD1 are different on these two invarian
sets, and this explains the discrepancy.

As mentioned above, aroundt58, there is a transition
from a smooth distribution to a filamental distribution. Th
is similar to the smooth-filamental transition described
@2,4#. A difference from them is that we consider herewith
autocatalytic reaction instead of a linear decay reaction w
source field. Nevertheless, some features such as dire
dependent Ho¨lder exponents~smooth distribution in one di-
rection and singular in another! seem to be present in ou
system as well.

Also worth noticing is the so-calledemptying transition
@3# at aroundt533. In the steady state fort&33, the reagent
B is distributed over the unstable manifold of the chao
saddle as can be seen in Fig. 7~b!. However, ast is in-
creased, less and less particles stay on the unstable man
until no particles remain in the neighborhood of the manifo
for t*33. The contraction due to the escape of the partic
from the chaotic saddle along its unstable manifold is
longer balanced by the production due to the reaction in
range of the phase space.

VII. COALESCENCE OF PARTICLES

As we explained in Sec. IV, our model includes anoth
type of reaction,B1B→B, which can be regarded as th
coalescence of particles. Suppose that the particles repre
a type of plankton that reproduces if there is enough food
the neighborhood, but dies if there are too many others
not enough food. Thus, the coalescenceB1B→B can be
thought of as the result of the competition for food.

This type of process with no other type of reaction in t
system is interesting in its own right, and it was conside
in @27#. We will summarize the results from@27# and de-
scribe an additional result in this section.

We consider the process consisting of two steps: the
vection under the flow on the phase spaceE with appropriate
boundary conditions and the reaction of the coalesce
type. Regardless of the value oft, the dissipation in the
dynamics of the particles makes the distribution of the p
ticles more and more concentrated on the attracting set
the mappingF̃ as time elapses, because there is no prod
tion of new particles in the system. The number of partic
can only decrease. We may focus only on the chaotic att
tor, because the particles attracted to periodic orbits quic
collapse onto a fewer number of particles~only as many as
the period of the orbit!.

Once most of the particles come close to the chaotic
tractor, the advection dynamics mixes the particles aro
within the neighborhood of the attractor. The mixing tends
make particles come within the reaction range and so
drives the decay of the number of the remaining particles
the system. Our simulation, in which we used a random
tial distribution of the particles on the attractor according
its natural measure, consistently shows that the decay
lows the power lawt21 regardless of the value of the tim
lag t. The decay of the particle density~the number of par-
ticles divided by the initial number of particles! for typical
02621
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runs of the simulation is shown in Fig. 9~thet52 case with
1’s and thet510 case with3’s!.

In order to understand such results, we approximate
entire process with arandom-shufflemodel. Recall that if the
dynamics on the attractor is strongly mixing, the natu
measure of an« cell that intersects the attractor can be r
garded as the probability for a typical trajectory on the
tractor to hit the« cell. With this analogy in mind, we con
sider the following model. Take the same number of balls
the number of particles in the system. For each ball, r
domly choose an« cell where we put the ball in, with the
probability of choosing an« cell equal to the natural measur
of that cell. If there is another ball in that« cell, the extra ball
is discarded. Doing this for all the balls, at the end we w
end up with fewer balls in the cells. This completes a sin
step of the process. Such a process can be simulated
computer as well, using a random number generator, an
typical run of such a simulation is also shown in Fig. 9, w
stars~* !.

Simplicity of the model allows us to rigorously compu
the evolution equation for the number of balls~B particles!.
Suppose we haven balls initially. Let p(n,k) be the prob-
ability that the number of balls isk after one step of the
process.p(n,k) can be computed in the following way. Th
probability thatn1 balls are ini 1th box, n2 balls are ini 2th
box, . . . ,nk balls are ini kth box is

n!

n1!n2! •••nk!
pi 1

n1pi 2

n2
¯pi k

nk.

Summing this over all 1<n1 , . . . ,nk<n such thatn11¯

1nk5n, and using multinomial formula, we get

(
n151

n2k11

••• (
nk51

n2k11
n!

n1!n2! •••nk!
pi 1

nipi 2

n2•••pi k

nkdn11•••1nk ,n

5
n!

~n2k!! E0

Pi 1
dx1•••E

0

pi k
dxk~x11•••1xk!

n2k

5 (
m51

k

~21!k2m (
Lm,I k

~pl 1
1•••1pl m

!n,

FIG. 9. The time evolution of the particle density fort52 ~1
symbols! and t510 ~3 symbols!. The stars~* ! correspond to the
random-shuffling model using the natural measure on the attra
and the continuous line was computed from Eq.~13!. The dashed
line is the reference line with slope21.
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where I k5$ i 1 , . . . ,i k% and the last summation is over a
subsetLm5$ l 1 , . . . ,l m% of I k . The second equality can b
proved by induction ink. p(n,k) is obtained by summing
this over all possible combinations ofi 1 , . . . ,i k :

p~n,k!5(
i k

(
m51

k

~21!k2m (
Lm,I k

~pl 1
1•••1pl m

!n

5 (
m51

k

~21!k2mS N2m
k2m D (

Lm,$1,N%
~pl 1

1•••1pl m
!n.

The last equality is due to the fact that a particular combi
tion Lm appears (k2m

N2m) times in the summation. By pluggin
this into the usual definition of the expected value ofk and
reducing the resulting expression using combinatorial equ
ties, we get

(
k51

n

kp~n,k!5•••5N2(
i 51

N

~12pi !
n.

The equation for the one-step evolution of the number d
sity can be derived using the above. Here the number den
n(t) of the particles at timet refers to the number of particle
at time t divided by the initial numberN of particles at time
zero. We takeN to be the number of« cells that intersect the
attractor, i.e., we distribute particles uniformly over the
tractor at time 0. The evolution equation can then be writ
as

n~ t11!512
1

N (
i 51

N

~12pi !
Nn~ t !, ~13!

wherepi is the natural measure of thei th « cell. Sincepi ’s
are small, we may expand the terms in the summation on
right-hand side to obtain

dn

dt
52C@n~ t !#2,

where C5(N/2)( i 51
N pi

2. The solution of this equation is
simply (Ct11)21 and it scales ast21. The numberC is
related to the dimensions of the attractor byC5«D22D0,
whereD2 is the correlation dimension andD0 is the box-
counting dimension@28#. Using these, we find that the num
ber density decay follows the scaling

n~«,t !;«2D2t21. ~14!

We verify this numerically as following. We measure th
decay of the number density for different values of«. For
each fixedt, we find the scaling exponent2g with «. In Fig.
10, we plot these scaling exponents as a function of timt.
One can see that, except for the transient region~small t! and
the region wheren(«,t) is too small~large t!, exponents are
close to the numerically computed value ofD251.48 of the
correlation dimension of the attractor. For the calculation
exponents2g, we use seven values of« in the interval
@0.005,0.056# equally spaced in the logarithmic scale.
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Our model is consistent@27# with the Smoluchowski
equation from the theory of the agglomeration reactionsBi
1Bj→Bi 1 j @23,24#. It is important to notice that these tw
results independently verify our theory based on the rand
shuffling model.

VIII. CONCLUSIONS

We have analyzed in this work the dynamics of autoca
lytic reaction of small, but finite-size particles in the tim
periodic cellular vortex flow field. The inertia of the activ
particles makes their dynamics dissipative and makes it p
sible to have chaotic attractors with fractal structure in th
spatial component.

For the particular parameter values of the particle dyna
ics that we considered, a chaotic attractor and a stable p
odic attractor coexist. The coexistence of the two attract
turns out to be the reason why a typical streak line ha
complicated structure. Significant amount of stretching ta
place along a streak line, because it passes through a ch
saddle lying on the basin boundary surface of the two attr
tors, whose neighborhood is stretched along its unsta
manifold.

By continuously injecting the reagentB, which goes
through the reactionA1B→2B at the interface with the
background fluidA, the streak line is covered by the reage
B with greater and greater thickness as the reagent tr
further up the streak line. Due to the contraction by the p
ticle dynamics, the average thickness approaches
asymptotic value.

To analyze the asymptotic distribution forY2→`, we in-
troduced the appropriate boundary conditions on the ph
spaceE and considered the active dynamics. We showed
for intermediate values of the time lagt, the coverage by the
reagentB in the stationary state follows similar formula as
the case of ideal tracers, except that the escape rate from
chaotic saddle is replaced by the weakest contracting ave

FIG. 10. Scaling exponentg for the number density, in the cas
of the closed system.sg is the estimated standard deviation fro
the least squares fit.D0 ,D2 are the box-counting and correlatio
dimensions of the chaotic attractor, respectively, andsD0

andsD2

are the corresponding standard deviations for the least squar
for g. D0'1.66, D2'1.48, sD2

50.02, andsD2
50.01. Here we

took t550.
6-10
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Lyapunov exponent on the chaotic attractor and on the c
otic saddle on the basin boundary. For smaller values ot,
there occurs an interesting transition from singular distri
tion of particles to a smooth one. This is similar to t
smooth-filamental transition studied in@2,4#, but they have
only studied the linear decay reaction with source field. F
ther investigation into the relationship to their system is
topic of future work.

The problem we studied in this paper is much more co
plex than the corresponding problem with ideal trace
mainly due to the fact that it possesses attractors and
more than one attractors coexist. Consequently, we obs
different regimes in thet parameter space. Since the flow
closed, the emptying transition observed in the case of o
flows occurs in a different context, as emptyingfrom a cha-
otic saddle to an attractor.

Although, this paper provides the description of chemi
activity of inertial particles under chaotic advection, it
worth comparing the passive properties of the model wit
recent approach of Balkovsky, Falkovich, and Fouxon@29#.
These authors considerrandom hydrodynamical flows and
weak inertia effects~A@1 in our notation! on advection.
Nevertheless, they find a tendency of clustering, which
consistent with the weakly dissipative character of the p
.

isy
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ticle dynamics in their limit. The same effect is much stro
ger in our case, where the inert tracer problem (A5`) is
nonchaotic, but at order 1 values of the inertia parameteA,
large scale chaotic attractors appear. In both approac
clear accumulation of particles takes place. Therefore,
conclude that enhancement of chemical activity can be
pected in random flows, too, due to particle inertia.

Finally, in the case of coalescence reaction, we h
shown, for sufficiently slow reactions, that the decay of nu
ber density follows a universal scaling law;t21. This
agrees well with our analytical result using a random-shu
model. Furthermore, we have also verified the scaling w
the reaction range predicted from our analytical res
through a direct numerical simulation.
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